Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(12): 3354-3362, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498427

RESUMEN

This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.

2.
ACS Appl Mater Interfaces ; 16(7): 8742-8750, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340053

RESUMEN

Direct formate fuel cells have gained traction due to their eco-friendly credentials and inherent safety. However, their potential is hampered by the kinetic challenges of the formate oxidation reaction (FOR) on Pd-based catalysts, chiefly due to the unfavorable adsorption of hydrogen species (Had). These species clog the active sites, hindering efficient catalysis. Here, we introduce a straightforward strategy to remedy this bottleneck by incorporating Pd with Cu to expedite the removal of Pd-Had in alkaline media. Notably, Cu plays a pivotal role in bolstering the concentration of hydroxyl adsorbates (OHad) on the surface of catalyst. These OHad species can react with Had, effectively unblocking the active sites for FOR. The as-synthesized catalyst of PdCu/C exhibits a superior FOR performance, boasting a remarkable mass activity of 3.62 A mg-1. Through CO-stripping voltammetry, we discern that the presence of Cu in Pd markedly speeds up the formation of adsorbed hydroxyl species (OHad) at diminished potentials. This, in turn, aids the oxidative removal of Pd-Had, leveraging a synergistic mechanism during FOR. Density functional theory computations further reveal intensified interactions between adsorbed oxygen species and intermediates, underscoring that the Cu-Pd interface exhibits greater oxyphilicity compared to pristine Pd. In this study, we present both experimental and theoretical corroborations, unequivocally highlighting that the integrated copper species markedly amplify the generation of OHad, ensuring efficient removal of Had. This work paves the way, shedding light on the strategic design of high-performing FOR catalysts.

3.
J Phys Chem Lett ; 14(39): 8828-8836, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751210

RESUMEN

Co3O4 is a highly selective catalyst for the electrochemical conversion of N2 to NH3. However, the large work function (WF) of Co3O4 leads to unsatisfactory activity. To address this issue, a strong built-in electric field (BIEF) was constructed in Co3O4 by doping C atoms (C-Co3O4) to reduce the WF for improving the electrocatalytic performance. C-Co3O4 exhibited a remarkable NH3 yield of 38.5 µg h-1 mgcat-1 and a promoted FE of 15.1% at -0.3 V vs RHE, which were 2.2 and 1.9 times higher than those of pure Co3O4, respectively. Kelvin probe force microscopy (KPFM), zeta potential, and ultraviolet photoelectron spectrometry (UPS) confirmed the formation of strong BIEF and WF reduction in C-Co3O4. Additionally, in situ Raman measurements and density functional theory (DFT) calculations revealed the relationship between BIEF and WF and provided insights into the reaction mechanism. Our work offers valuable guidance for the design and development of more efficient nitrogen reduction catalysts.

4.
ACS Nano ; 17(14): 13974-13984, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37410800

RESUMEN

Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C-C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f-O 2p-Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d-p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at -1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.

5.
ACS Appl Mater Interfaces ; 15(23): 28790-28798, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37268875

RESUMEN

The rational design of electrocatalysts for formate oxidation reaction (FOR) in alkaline media is crucial to promote the practical applications of direct formate fuel cells (DFFCs). The FOR kinetic on palladium (Pd) based electrocatalysts is strongly hindered by unfavorably adsorbed hydrogen (Had) as the major intermediate species blocking the active sites. Herein, we report a strategy of modulating the interfacial water network of dual-site Pd/FeOx/C catalyst to significantly enhance the desorption kinetics of Had during FOR. Aberration-corrected electron microscopy and synchrotron characterizations revealed the successful construction of Pd/FeOx interfaces on carbon support as a dual-site electrocatalyst for FOR. Electrochemical tests and in situ Raman spectroscopy results showed that Had could be effectively removed from the active sites of the as-designed Pd/FeOx/C catalyst. CO-stripping voltammetry and density functional theory calculations (DFT) demonstrated that the introduced FeOx could effectively accelerate the dissociative adsorption of water molecules on active sites, which accordingly generates adsorbed hydroxyl species (OHad) to facilitate the removal of Had during FOR. This work provides a novel route to develop advanced FOR catalysts for fuel cell applications.

6.
Small ; 19(36): e2301717, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37118856

RESUMEN

Internal electric field (IEF) construction is an innovative strategy to regulate the electronic structure of electrode materials to promote charge transfer processes. Despite the wide use of IEF in various applications, the underlying mechanism of its formation in an asymmetric TM-O-TM unit still remains poorly understood. Herein, the essential principles for the IEF construction at electron occupancy state level and explore its effect on hybrid capacitive deionization (HCDI) performance is systematically investigated. By triggering a charge separation in Ni-MnO2 via superexchange interactions in a coordination structure unit of Mn4+ -O2- -Ni2+ , the formation of an IEF that can enhance charge transfer during the HCDI process is demonstrated. Experimental and theoretical results confirm the electrons transfer from O 2p orbital to TM (Ni2+ and Mn4+ ) eg orbital via superexchange interactions in the basic Mn4+ -O2- -Ni2+ coordination unit. As a result of the charge redistribution, the IEF endows Ni-MnO2 with superior electron and ion transfer property. This work presents a unique material design strategy that activates the electrochemical performance, and provides insights into the formation mechanism of IEF in an asymmetric TM-O-TM unit, which has potential applications in the construction of other innovative materials.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36881479

RESUMEN

Direct formate fuel cells (DFFCs) have drawn tremendous attention because they are environmentally benign and have good safety. However, the lack of advanced catalysts for formate electrooxidation hinders the development and applications of DFFCs. Herein, we report a strategy of regulating the metal-substrate work function difference to effectively promote the transfer of adsorbed hydrogen (Had), thus enhancing formate electrooxidation in alkaline solutions. By introducing rich oxygen vacancies, the obtained catalysts of Pd/WO3-x-R show outstanding formate electrooxidation activity, exhibiting an extremely high peak current of 15.50 mA cm-2 with a lower peak potential of 0.63 V. In situ electrochemical Fourier transform infrared and in situ Raman measurements verify an enhanced in situ phase transition from WO3-x to HxWO3-x during the formate oxidation reaction process over the Pd/WO3-x-R catalyst. The results of experimental and density functional theory (DFT) calculations confirm that the work function difference (ΔΦ) between the metal (Pd) and substrate (WO3-x) would be regulated by inducing oxygen vacancies in the substrate, resulting in improved hydrogen spillover at the interface of the catalyst, which is essentially responsible for the observed high performance of formate oxidation. Our findings provide a novel strategy of rationally designing efficient formate electrooxidation catalysts.

8.
Small ; 19(15): e2205666, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36670092

RESUMEN

Transition metal oxides suffer from slow salt removal rate (SRR) due to inferior ions diffusion ability in hybrid capacitive deionization (HCDI). Local electric field (LEF) can efficiently improve the ions diffusion kinetics in thin electrodes for electrochemical energy storage. Nevertheless, it is still a challenge to facilitate the ions diffusion in bulk electrodes with high loading mass for HCDI. Herein, this work delicately constructs a LEF via engineering atomic-level donor (O vacancies)-acceptor (Mn atoms) couples, which significantly facilitates the ions diffusion and then enables a high-performance HCDI. The LEF boosts an extended accelerated ions diffusion channel at the particle surface and interparticle space, resulting in both remarkably enhanced SRR and salt removal capacity. Convincingly, the theoretical calculations demonstrate that electron-enriched Mn atoms center coupled with an electron-depleted O vacancies center is formed due to the electron back-donation from O vacancies to adjacent Mn centers. The resulted LEF efficiently reduce the ions diffusion energy barrier. This work sheds light on the effect of atomic-level LEF on improving ions diffusion kinetics at high loading mass application and paves the way for the design of transition metal oxides toward high-performance HCDI applications.

9.
Angew Chem Int Ed Engl ; 61(31): e202205832, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35638142

RESUMEN

Copper oxide-based materials effectively electrocatalyze carbon dioxide reduction (CO2 RR). To comprehend their role and achieve high CO2 RR activity, Cu+ in copper oxides must be stabilized. As an electrocatalyst, Cu2 O nanoparticles were decorated with hexagonal boron nitride (h-BN) nanosheets to stabilize Cu+ . The C2 H4 /CO ratio increased 1.62-fold in the CO2 RR with Cu2 O-BN compared to that with Cu2 O. Experimental and theoretical studies confirmed strong electronic interactions between the two components in Cu2 O-BN, which strengthens the Cu-O bonds. Electrophilic h-BN receives partial electron density from Cu2 O, protecting the Cu-O bonds from electron attack during the CO2 RR and stabilizing the Cu+ species during long-term electrolysis. The well-retained Cu+ species enhanced the C2 product selectivity and improved the stability of Cu2 O-BN. This work offers new insight into the metal-valence-state-dependent selectivity of catalysts, enabling the design of advanced catalysts.

10.
ACS Appl Mater Interfaces ; 14(11): 13261-13270, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258293

RESUMEN

For the steady electroreduction of carbon dioxide (CO2RR) to value-added chemicals with high efficiency, the uncontrollable surface reconstruction under highly reducing conditions is a critical issue in electrocatalyst design. Herein, we construct a catalyst model with a sandwich-like structure composed of highly reactive metallic Cu nanosheet that is confined in thin carbon layers (denoted as C/Cu/C nanosheet). The sandwich-like C/Cu/C nanosheet avoids the oxidation of the active site of metallic Cu at an ambient atmosphere owing to the protective coating of the carbon layer, which inhibits the surface reconstruction that occurs via the dissolution of copper oxides and redeposition of dissolved Cu ions. The as-prepared C/Cu/C nanosheet exhibits a prominent Faradaic efficiency (FE) of 47.8% for CH4 products at -1.0 V with a current density of 20.3 mA·cm-2 and stable production of CH4 during 12 h operation with negligible selectivity loss. Our findings provide an effective strategy of restraining surface reconstruction for the design of selective and stable electrocatalysts toward CO2RR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...